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GEOMETRIC CONSTRUCTIONS VIA ORIGAMI: FROM CLASSICAL
METHODS TO MULTIPLE FOLD TECHNIQUES

Chan hee Lee and Soon-Yi Kang∗

Abstract. We examine geometric constructions using Origami (paper folding), explor-
ing the progression from classical ruler-and-compass methods to advanced multiple fold
Origami techniques. We begin by reviewing ruler-and-compass constructions and their
algebraic characterization through field extensions. We then introduce the seven Huzita-
Justin axioms for single-fold Origami and demonstrate that axioms O1 through O5 produce
exactly the ruler-and-compass constructible points, while axiom O6 extends constructibil-
ity to solutions of cubic equations, including angle trisection.

We investigate multiple fold axioms and present the result that (n−2)-fold Origami can
construct real roots of degree n polynomials using Lill’s method. Our main contribution is
proving that all quadratic equations with complex coefficients can be solved using two-fold
Origami. We introduce Lill’s Method for Complex Roots (LMCR), which finds polynomial
roots through sequences of similar triangles in the complex plane, and provide an explicit
construction method via the axiom AL13a7bb. This work demonstrates how Origami
constructions transcend classical geometric limitations.

1. Introduction

The classical method of geometric construction uses only a straightedge and a compass.
With these tools, one can draw a line through two given points and construct a circle
with a given center and radius equal to the distance between any two given points, as
well as determine their intersections. It is well known that such constructions produce
exactly the numbers lying in a tower of quadratic field extensions over Q. Because of this
algebraic restriction, certain problems, such as trisecting an arbitrary angle or solving a
general cubic equation, cannot be solved by ruler-and-compass constructions alone. Origami
constructions, however, provide a powerful alternative that overcomes these limitations.
Standard references such as [7] and [9] provide detailed introductions to the mathematical
structure underlying paper-folding constructions.

A formal axiomatic description of single-fold Origami is given by the Huzita–Justin
axioms. Using these axioms, one can trisect an arbitrary angle and solve all quadratic,
cubic, and quartic equations with rational coefficients [12]. That is, single-fold Origami can
construct any real number lying in a tower of quadratic and cubic field extensions over Q.

Alperin and Lang [2] extended these axioms to n-fold Origami, which allow two or more
fold lines to be created simultaneously under mutual alignment constraints. Combining
Lill’s method with the n-fold axioms, they showed that every real root of a polynomial of
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degree n can be constructed using (n− 2)-fold Origami. However, this bound represents a
worst-case requirement. In practice, many polynomials can be solved with fewer folds. In
2004, Lang proved that angle quintisection is possible using two-fold Origami [11]. Building
on this result, Nishimura [15] proved that two-fold Origami can construct roots of any
quintic polynomial, which also enables angle quintisection, and König and Nedrenco [10]
further showed that two-fold Origami can also solve septic equations.

In this paper, we present a comprehensive exposition of these Origami construction meth-
ods. We provide detailed proofs of the Huzita-Justin axioms, demonstrate constructions
for angle trisection and solutions of cubic equations, and examine the theory of multiple-
fold Origami. We also introduce an extension of Lill’s method applicable to complex roots
and give an explicit two-fold Origami construction for quadratic equations with complex
coefficients.

2. Euclidean constructions - Ruler and Compass

In the classical geometric construction, there are two permitted operations on the points
in the Euclidean plane. We start with P = P0, a set of points in the plane.

• (C1) Given two distinct points p1 and p2 in P , draw a line that passes through p1 and
p2 with a ruler.

• (C2) Given two distinct points p1 and p2 in P , draw a circle centered at p1 with radius
|p1 − p2| with a compass.

Let P1 be the set of points in P0 and intersection points of lines and circles obtained by
means of the operations C1 and C2. Performing C1 and C2 on P = P1, we obtain the
new set P2. We can continue this process and call the points obtained in this process RC-
constructible from P0. Moreover, we call a point that is constructible from {(0, 0), (1, 0)}
RC-constructible, and we say that the coordinates of such points are RC-constructible num-
bers. Important feature of RC-construction includes constructing the perpendicular bisec-
tor of a line segment, bisecting an angle, drawing a perpendicular line from a point to a
line, etc. Moreover, it is easy to see that the set of RC-constructible numbers is closed
under the four arithmetic operations, forming a field (see Fig. 1). This implies that the
field of RC-constructible numbers contains the rationals Q.

0 a a+ b

b

(a) Addition: a+ b

0 a− b a

b

(b) Subtraction: a− b

0 1 a

b

ab

(c) Multiplication: a×b

0 b a

1

a
b

(d) Division: a
b

Figure 1. RC-constructible numbers are closed under arithmetic operations
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When constructing new points, we add intersection points obtained through the opera-
tions C1 or C2. There are three types of intersections: line with line, line with circle, and
circle with circle. Solving the corresponding equations in each case leads to a quadratic
equation. Thus, if p is a constructible number, then [Q(p) : Q] must be a power of 2. More-
over, as shown in Fig. 2, we can construct

√
a for any constructible a > 0 using standard

ruler-and-compass methods.

√
a

a 1

Figure 2. Construction of
√
a using the RC

By the quadratic formula, we obtain the following result.

Theorem 2.1. RC-constructions can solve any quadratic equation with RC-constructible
coefficients.

However, arbitrary angle trisection is impossible with RC-constructions. For example,
trisecting a 60◦ angle (equivalently, constructing a 20◦ angle) requires constructing sin 20◦.
Using the triple-angle identity,

sin 60◦ = 3 sin 20◦ − 4 (sin 20◦)3 ,

we see that sin 20◦ satisfies the cubic equation

4x3 − 3x+

√
3

2
= 0.

Since [Q(sin 20◦) : Q] = 6, which is not a power of 2, sin 20◦ cannot be constructed using
RC-methods.

In the next section, we introduce Origami constructions, including methods that enable
arbitrary angle trisection.

3. Origami constructions - Paper Folding

If we consider a crease formed by Origami to be a line, we may write Huzita-Justin
axioms as follows:

• (O1) Given two distinct points p1 and p2, there is a unique line that passes through
p1 and p2.

• (O2) Given two distinct points p1 and p2, there is a unique line that places p1 onto p2.
• (O3) Given two lines L1 and L2, there is a line that places L1 onto L2.
• (O4) Given a point p and a line L, there is a unique line perpendicular to L that

passes through p.
• (O5) Given two points p1 and p2 and a line L1, there is a line that places p1 onto L1

and passes through p2.
• (O6) Given two points p1 and p2 and two lines L1 and L2, there is a line that places
p1 onto L1 and p2 onto L2.

• (O7) Given a point p and two lines L1 and L2, there is a line that places p onto L1

and is perpendicular to L2.
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Figure 3. Huzita-Justin Origami Axioms1

In the context of the Huzita–Justin axioms and the additional Origami axioms introduced
later in this paper, the term axiom refers to a basic folding operation rather than a logical
axiom in the usual mathematical sense. The formal definition used by Alperin and Lang [2]
is the following:

Definition 3.1. A one-fold axiom is a minimal set of alignments that define a single
fold line on a finite region of the Euclidean plane with a finite number of solutions.

A line constructed using the above axioms is called an Origami-constructible line. Points
obtained as intersections of Origami-constructible lines are called Origami-constructible
points, and each coordinate of such a point is referred to as an Origami-constructible number.
Note that not all points lying on an Origami-constructible line are necessarily constructible.

It is straightforward to verify that any point constructible using axioms O1, O2, O3 and
O4 can also be obtained by RC-constructions, because O1 corresponds to C1, O2 produces
the perpendicular bisector of p1p2, O3 performs angle bisection between L1 and L2 when
they intersect, and O4 constructs a perpendicular line to L1 through p1. Including O5 yields
all RC-constructible points, as O5 is equivalent to finding the intersection of L1 with the
circle centered at p2 of radius |p1− p2|. The resulting fold line is the perpendicular bisector
of p1 and the intersection point if any. It was shown by Auckly and Cleveland [4] that
constructions using only O1 through O4 are strictly weaker than classical RC-constructions.
Later, Alperin [1] proved that constructions using O1 through O5 generate exactly the set
of RC-constructible points.

To obtain constructible points beyond those achievable by ruler and compass, one must
consider axioms O6 and O7. In fact, Alperin and Lang [2, Section 2] proved that the
Huzita–Justin axioms provide a complete set of axioms for single-fold origami constructions,
in the sense that every possible single fold is derivable from these axioms. However, O7

does not yield any new constructible points. To see why, consider the case when a point p
and lines L1 and L2 are given (see Fig.4). One may first construct a line L3 parallel to L2

passing through point p, then find its intersection with L1, say q. Folding p onto q produces

1Interactive visualizations of these axioms are available at this link (See 1).

https://jealous-girl-a59.notion.site/Geometric-constructions-via-Origami-From-classical-methods-to-multiple-fold-techniques-2a9c9e7f6a8e80ef9907f647aff6039e?pvs=143
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the same fold line described by O7, meaning that this axiom yields nothing beyond O1

through O6.

L

p1

p2

(a) O5

L1

L2

p q
L3

(b) O7

Figure 4. Drawing the Axioms O5 and O7 by using ruler and compass

We next observe that axiom O6 is sufficient to solve cubic equations. Before proving this
fact, we illustrate how O6 enables angle trisection.

As shown in Fig.5, let p1 be the lower left corner of the square Origami paper, and let
θ denote the angle between the bottom edge and the line L1 at p1. Choose an arbitrary
point p2 on the left edge of the square.

θ

L1

p1

p2

Figure 5. Trisection 12

First, apply axiom O2 to fold p1 onto p2, and call the resulting fold line F1. Then apply
O6 to fold p1 onto F1 (mapping it to p3) and to fold p2 onto L1 (mapping it to p4), as shown
in Fig.6. Here F2 denotes the resulting fold line.

2Interactive visualizations of the angle trisection process is available at this link (See 2).

https://jealous-girl-a59.notion.site/Geometric-constructions-via-Origami-From-classical-methods-to-multiple-fold-techniques-2a9c9e7f6a8e80ef9907f647aff6039e?pvs=143
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Figure 6. Trisection 2

Finally, apply axiom O3 to fold the extension of the segment p1p3, denoted L2, onto L1.
The final fold F3 bisects ∠p3p1p4, thereby producing a trisection of the original angle θ.

F1

L1

p1

p2

p3

p4

F2

θ

L2

F3

Figure 7. Trisection 3

To verify that we have really trisected the angle, let p5 and p6 be the intersections of F2

with F1 and the bottom edge of the paper, respectively.
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Figure 8. Trisection 4

Since p1p6 ∥ p3p5 are both parallel to F1, the angles ∠p6p1p3 and ∠p1p3p5 are equal, and
we denote their common measure by α. Next, because F2 is the perpendicular bisector of
both p2p4 and p1p3, we have ∠p2p3p1 = ∠p4p1p3 and ∠p5p1p3 = ∠p5p3p1 = α. Moreover,
since F1 is the perpendicular bisector of p1p2, it follows that ∠p2p3p5 = ∠p1p3p5 = α.
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Therefore the angle ∠p4p1p3 must have measure 2α, and hence α = θ
3
. This confirms that

the construction indeed produces a trisection of the angle.
In fact, using the Huzita-Justin axioms, one can solve all quadratic, cubic, and quartic

equations with rational coefficients. We now give a proof of solving a cubic equation with
Origami.

Theorem 3.2. Real roots of any cubic polynomial with rational coefficients can be
constructed by Origami.

In fact, the theorem holds for any cubic polynomial with Origami constructible coeffi-
cients as seen in the proof below. Before proving the theorem, we review some basic prop-
erties of Origami. If one folds the point p onto a point on the line L, say q, the fold line is
the perpendicular bisector of pq. Thus every point on the fold has equal distance to p and
to L. Folding p onto all points of L generates a parabola with the focus p and the directrix
L, and the fold line in each such fold is the tangent line to the parabola.

p

q L

Figure 9. O2 with a point on a line

p

L

Figure 10. Parabola and fold lines3

Hence, axiom O6 is equivalent to finding a common tangent to two parabolas.

3Interactive visualization showing how fold lines (tangent lines) form the parabola envelope: link (See
3).

https://jealous-girl-a59.notion.site/Geometric-constructions-via-Origami-From-classical-methods-to-multiple-fold-techniques-2a9c9e7f6a8e80ef9907f647aff6039e?pvs=143
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p

q

Figure 11. O6 and simultaneous tangent line

Proof of Theorem 3.2. We follow the argument in [5, p.275]. For arbitrary Origami con-
structible numbers a and nonzero b, consider two parabolas

Ca :

(
y − 1

2
a

)2

= 2bx and Cb : y =
1

2
x2.

We will show that the slope m of any common tangent line to both parabolas satisfies
m3 + am + b = 0. We exclude the case b = 0, because the equation then reduces to
m3 + am = m(m2 + a) = 0, and thus does not represent a nontrivial cubic equation.
Because b ̸= 0, the derivative of Ca is

dy

dx
=

b

y − a
2

,

which is never zero. Hence any common tangent must have nonzero slope, so we restrict to
m ̸= 0.

Let T be a common tangent line to parabolas Ca and Cb at (x1, y1) and (x2, y2), respec-
tively. If m is the slope of T , then

(x1, y1) =

(
b

2m2
,
b

m
+

a

2

)
and (x2, y2) =

(
m,

m2

2

)
.

Hence

m =
y2 − y1

x2 − x1

=

m2

2
−
(

b

m
+

a

2

)
m−

b

2m2

=
m4 − 2bm− am2

2m3 − b
,

which implies that
m = 0 or m3 + am+ b = 0.

Since m ̸= 0, we have m3 + am + b = 0. The fold line constructed by Origami has
the form F : y = mx + c for some c ∈ R. The slope m is determined geometrically by
folding. To construct the value m as a number, one may intersect F with the x-axis to
obtain

(
− c

m
, 0
)
, and then intersect F with the vertical line x = − c

m
+1 to obtain the point(

− c
m
+ 1,m

)
, whose y-coordinate yields m.

Any cubic equation x3 + a′x2 + b′x + c′ = 0 with Origami-constructible coefficients can
be reduced to the depressed form y3 + ay + b = 0 by the substitution y = x − a′

3
. Thus,

one real root can be constructed using axiom O6. Since Origami constructions include all
RC-constructions, the remaining quadratic factor may also be solved using Origami if it
has real roots. Therefore, all real roots of any cubic equation with Origami-constructible
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coefficients can be constructed. This includes, as a special case, all cubics with rational
coefficients.

4. Multiple Folding to Solve Higher-Degree Polynomial Equations

As shown in the previous section, single-fold Origami allows angle trisection and the
construction of all real roots of cubic equations. It has also been shown that single-fold
Origami can solve quartic equations [6]. However, it cannot, in general, quintisect an
angle or solve a general quintic equation. To extend Origami methods to higher-degree
equations, Alperin and Lang [2] used multiple folds, in which two or more fold lines are
created simultaneously under prescribed alignment constraints.

Before discussing multiple folds, we restate the classical axiom O6 using reflection nota-
tion. Let F (P ) denotes the reflection of a point P across a (fold) line F and F (L) denotes
the reflection of a line L. Then axiom O6 specifies a fold line F satisfying:{

F (p1) ∈ L1,

F (p2) ∈ L2.

Two-fold axioms extend this idea by requiring two fold lines to be constructed simul-
taneously under mutual constraints. Each fold may depend on the other, and the align-
ment conditions must hold at the same time. Alperin and Lang identified ten fundamental
alignment types for two-fold constructions [2, p.11], and showed that combinations of these
alignments yield 489 distinct two-fold axioms [2, p.13, 14]. For example, given two points
p1, p2 and three lines L1, L2 and L3, a two-fold axiom may require constructing two fold
lines F1 and F2 satisfying 

F1(p1) ∈ L1,

F1(L3) = F2,

F2(p2) ∈ L2.

This axiom, denoted AL4a6ab, plays an essential role in constructions used to solve quintic
equations [15]. Although some configurations, such as the one shown in Fig.6, appear to
involve two fold lines, they are not regarded as two-fold axioms unless both folds must be
constructed simultaneously rather than sequentially.

p1

p2

L1F1

L2
L3

F2

Figure 12. Example of Two-fold Axiom called AL4a6ab

Definition 4.1. An n-fold axiom is a minimal set of alignments that define n simulta-
neous fold lines on a finite region of the Euclidean plane with a finite number of solutions.
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Alperin and Lang further proved that every real root of a degree n polynomial can be
constructed using (n−2)-fold Origami via Lill’s method [8,13]. Lill’s method is a geometric
procedure that encodes the coefficients of a polynomial into a piecewise path.

Let f(x) = anx
n + · · · + a1x + a0 be a polynomial with real coefficients, and assume it

has at least one real root. Lill’s method represents the polynomial geometrically through a
stepwise construction. Begin at the origin O, facing the positive x-axis. For each coefficient
ak, starting from an, move a distance |ak| along the current facing direction: if ak > 0, move
forward; if ak < 0, move backward along the same line; and if ak = 0, make no translation
but proceed to the next step. After each translation (including the case ak = 0), rotate 90◦

counterclockwise and continue the process until the final coefficient a0 has been used. The
endpoint of this construction is denoted T , and the extended lines supporting each segment
are labeled Ln, Ln−1, . . . , L0. If a coefficient is zero, the corresponding segment has length
0, but Lk is still defined as the infinite line through the current point in the current facing
direction.

As a simple example, consider the polynomial f(x) = x2 − 1 with coefficients (1, 0,−1).
Starting at the origin and facing the positive x-axis, we first move one unit forward for the
coefficient 1, then rotate 90◦ counterclockwise. The next coefficient is 0, so no translation
occurs, but we again rotate 90◦. At the final coefficient −1, we move one unit backward
relative to the current facing direction, which brings us to the point (2, 0). The supporting
lines determined by these steps are L2 : y = 0, L1 : x = 1, and L0 : y = 0.

We now describe how Lill’s method relates the geometric path to the real roots of f(x).
Starting from the origin O, consider a ray that departs from the positive x-axis with angle θ.
Let this ray first meet the line Ln−1, then reflect by 90◦ toward Ln−2, and so on, continuing
to reflect orthogonally from

Ln−1, Ln−2, . . . , L1, L0

in this order. If, after the final reflection at L0, the ray passes through the point T (and the
path does not pass through any intermediate vertex of the coefficient segments for i ≥ 2),
we obtain a broken ray from O to T as illustrated in Figure 13.

a5

a4

a3

a2

a1

a0

O

T

θ

Figure 13. Lill diagram for f(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0
with all positive coefficients.4

We claim that in this case − tan θ is a real root of f(x). To see this, we introduce a
sequence of signed “remainders” yk determined by the distances along the coefficient lines.
As the ray travels from O to Ln−1 and along Ln−1, the signed distance it covers on Ln−1 is
an tan θ as shown in Figure.14, so the remaining signed length on that line is

yn−1 = an−1 − an tan θ.

4Interactive visualization of Lill’s method for finding polynomial roots geometrically: link (See 4).

https://jealous-girl-a59.notion.site/Geometric-constructions-via-Origami-From-classical-methods-to-multiple-fold-techniques-2a9c9e7f6a8e80ef9907f647aff6039e?pvs=143
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When the ray reflects to Ln−2, a similar consideration shows that the signed distance along
Ln−2 is yn−1 tan θ, so the remaining length on Ln−2 is

yn−2 = an−2 − yn−1 tan θ.

Proceeding in this way, we define recursively for k = n− 1, n− 2, . . . , 1,
yk−1 = ak−1 − yk tan θ.

Since the broken ray ends exactly at T , the remaining length on the last line L0 must be
zero, that is,

y0 = 0.

By expanding the recurrence, one checks that
y0 = a0 − a1 tan θ + a2(tan θ)

2 − · · ·+ (−1)nan(tan θ)
n = f(− tan θ).

Thus the condition y0 = 0 is equivalent to f(− tan θ) = 0, which proves that − tan θ is a
real root of f(x) whenever the reflected path with departure angle θ starts at O and ends
at T .

a5

a4

a3

a2

a1

a0
y4

y4 tan θy3

a5 tan θ
O

T

θ

θ

θ

Figure 14. Proof of Lill’s method

Moreover, we can realize the solution path in Lill’s method for a polynomial of degree n
by using a single (n−2)-fold operation. In the Lill diagram associated with the polynomial
f(x) = anx

n + · · ·+ a1x+ a0, the solution ray from O to T consists of n straight segments
joined by n− 1 right-angle turns on the lines Ln−1, . . . , L1.

To construct this path by folding, let F1, . . . , Fn−2 denote the fold lines corresponding to
the interior segments. These fold lines are determined simultaneously by the (n − 2)-fold
axioms under the following alignment conditions (see Fig. 15):

Fi ⊥ Fi+1, for i = 1, 2, . . . , n− 3,

Fi ∩ Fi+1 ∈ Ln−i−1, for i = 1, 2, . . . , n− 3,

F1(O) ∈ La,

Fn−2(T ) ∈ Lb,

where the boundary conditions are encoded by two auxiliary constraint lines: La, defined
as x = 2an, and Lb, the line parallel to L1 passing through L1(T ).

This system imposes 2(n − 2) scalar constraints, which matches exactly the 2(n − 2)
degrees of freedom available in an (n − 2)-fold configuration. Therefore, we obtain the
following theorem. (See [2] for more detailed proof.)

Theorem 4.2 ( [2, Theorem 1]). Every polynomial equation of degree n with real solu-
tions can be solved by (n− 2)-fold Origami.
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a5
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a3

a2

a1

a0

La

Lb

F1

F2

F3

F3(T ) O

T

F1(O)

Figure 15. Lill’s method realized by an (n−2)-fold construction.

5. Constructing Quadratic Complex Roots by Two-Fold Origami

All Origami construction methods discussed so far (RC-constructions, single-fold, two-
fold, and multiple-fold Origami) operate in the Euclidean plane and therefore produce only
real roots of polynomial equations. This naturally raises the question of whether Origami
may also be used to obtain complex roots.

A graphical approach toward extending Lill’s real-root method to the complex plane
appears in late 19th-century French literature [3], and was recently revisited by Tabach-
nikov [16].

Building on this perspective, Nakai [14] formulated a unified geometric framework in
which a polynomial with complex coefficients is represented as a polygonal path in the
complex plane, and a complex root corresponds to a chain of similar triangles reflecting
along its segments. To distinguish it from the real version discussed in Section 4, we refer
to this extension as the Lill’s Method for Complex Roots (LMCR).

Although Nakai proved that certain cubic equations can be solved theoretically using
Origami together with LMCR, his work did not include explicit constructions. In this
section, after illustrating LMCR through examples, we demonstrate that every quadratic
equation with complex coefficients admits a fully explicit solution by a two-fold Origami
construction.

Let f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial with complex coefficients.
Define the points

C0 := O, C1 := an, . . . , Ck := an + an−1 + · · ·+ an−k+1, Cn+1 = an + · · ·+ a0.

Starting with P0 = C0, each subsequent point Pk+1 is obtained by multiplying the directed
segment

−−−−→
PkCk+1 by the complex factor 1− z0. If this process yields Pn = Cn+1, then z0 is

a root of f(z).
We do not prove the correctness of LMCR here, referring instead to Nakai [14]. We

illustrate the mechanism using examples.

Example 5.1. Consider the polynomial f(z) = z2 − (1 + 2i)z + (−1 + i) whose roots
are 1 + i and i. We compute C0 = 0, C1 = 1, C2 = −2i, and C3 = −1 − i. For the root
z0 = 1 + i, multiplying

−−−→
P0C1 by 1 − (1 + i) = −i yields P1 = −i. Repeating with

−−−→
P1C2

again multiplied by −i gives P2 = −1− i = C3, confirming that 1 + i is a root of f(z). A
similar computation verifies the root z0 = i. The two LMCR traces are shown in Figures 16
and 17.
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C0 = P0 C1

C2

C3 = P2

P1 = −i

△1

△2

Figure 16. LMCR con-
struction for the root z =
1 + i of f(z) = z2 − (1 +
2i)z + (−1 + i)

C0 = P0 C1

C2

C3 = P2 P1

△1

△2

Figure 17. LMCR con-
struction for the root z = i
of f(z) = z2 − (1 + 2i)z +
(−1 + i)

The construction typically produces a chain of similar triangles. To see this, consider the
triangles △1 := △P0P1C1 and △2 := △P1P2C2 in Figure 16 (or Figure 17). Multiplication
by 1 − z0 rotates by arg(1 − z0) and scales by |1 − z0|, so corresponding angles and side
ratios agree:

∠C1P0P1 = ∠C2P1P2,
|P0P1|
|P0C1|

=
|P1P2|
|P1C2|

.

Thus △1 ∼ △2. In fact, LMCR may be reformulated as the task of locating a sequence of
similar triangles.

In most cases, finding such a sequence of similar triangles allows us to construct the
roots. However, there are exceptional cases where the roots of certain polynomials do
not correspond to a sequence of similar triangles. We discuss these cases in the following
examples.

Example 5.2. If f(z) has the root z = 0, then multiplying by 1− 0 = 1 gives Pk = Ck

for all k, so no triangle appears. Since the constant term vanishes, Cn+1 = Cn, and the
LMCR condition Pn = Cn+1 still holds. The root z = 0 may then be factored out and
LMCR applied to the remaining polynomial.

If f(z) has the root z = 1, then multiplying by 1 − 1 = 0 forces P1 = O and hence
Pk = O for all k ≥ 1. Because the sum of the coefficients of f(z) equals zero, we again
have Cn+1 = O, so the LMCR condition Pn = Cn+1 is satisfied. The root z = 1 can then
be factored out, and LMCR applied to the reduced polynomial.

C0 = C4 = O
C1

C2

C3

Figure 18. LMCR construction for the root z = 1 of f(z) = z3 + (1 +√
2)z2 − (

√
2 + i)z − 2 + i

A further degenerate case arises when arg(1 − z0) = 0 or arg(1 − z0) = π, so multipli-
cation by 1 − z0 produces no rotation and no similar triangles appear. This phenomenon
appears precisely when the root z0 is real. This issue can be resolved through a simple
transformation.

Suppose f(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 has a real root r ∈ R. Define a new
polynomial f0(z) = bnz

n + bn−1z
n−1 + · · · + b1z + b0, where bk = in−kak for k = 0, . . . , n.
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Then inf(z) = f0(iz), so f0(z) has the root ir, which is non-real. Consequently, LMCR
applied to f0 yields a nondegenerate configuration with a valid chain of similar triangles.

If the polynomial f(z) has non-real coefficients (after normalizing by dividing by an), we
apply LMCR directly. If all coefficients are real, we instead apply LMCR to a rotated version
of the polynomial, guaranteeing the appearance of non-real roots and thus a nondegenerate
similar triangle configuration.

Once the sequence of n similar triangles is obtainable for a degree n polynomial, LMCR
allows us to determine a root geometrically. The quadratic case is the first instance where
a nontrivial similar-triangle configuration appears, and only two triangles are required. We
now show that this configuration can be realized by a two-fold construction.

Theorem 5.3. Any quadratic equation with complex coefficients can be solved by two-
fold Origami.

Proof. As illustrated in Figure 19, let Lk+1 denote the line extending the segment CkCk+1.
Construct the perpendicular bisector L4 of the segment C1C2. When C1 = C2, we take
L4 := L1. We then apply a two-fold axiom such as AL13a7bb or AL7a910a (see p. 13 in [2])
satisfying the following alignment conditions, as shown in Figure 20:

(1)


C2 ∈ F1,

F2(C0) ∈ F1(L4(L1)),

F2(C0) ∈ L4(F1(L3)),

F1(L4(F2)) ⊥ LF2(C0),C3 , where LA,B is a line containing A and B.

L1

L2

L3

|
|

C0

C1

C2

C3

L4

Figure 19. Initial construc-
tion: lines L1, L2, L3 and per-
pendicular bisector L4 for the
example z = i of f(z) = z2 −
(1 + 2i)z + (−1 + i)

F2

L4(L1)

F1

L1

L2

L3

C0

F2(C0)

C1

C2

C3

||
||

L4

Figure 20. Two-fold
construction using axiom
AL13a7bb: fold lines F1

and F2 satisfying the
alignment conditions

The key difficulty in this proof is to maintain a specific angle using only reflections and
point alignments. The first three conditions (C2 ∈ F1, F2(C0) ∈ F1(L4(L1)), and F2(C0) ∈
L4(F1(L3))) ensure that the triangle △C0C1F2(C0) is first reflected across L4 and then
across F1, resulting in a configuration congruent to △C ′

0C2F2(C0)
′, where C ′

0 = F1(L4(C0))
and F2(C0)

′ = F1(L4(F2(C0))), as illustrated in Figure 21.
If the segment C ′

0F2(C0)′ is parallel to C3F2(C0), then the required pair of similar triangles
has been obtained. This parallelism is guaranteed by the final condition F1(L4(F2)) ⊥
LF2(C0),C3 . Since F2 is perpendicular to the line LC0,F2(C0), the reflected line F1(L4(F2)) is still
perpendicular to LC′

0,F2(C0)′ . Thus, the final condition F1(L4(F2)) ⊥ LF2(C0),C3 implies that
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C ′
0F2(C0)′ is parallel to F2(C0)C3. Consequently, the constructed point F2(C0) coincides

with P1 in the LMCR construction, thereby determining the root. A direct comparison
between Figure 21 and Figure 17 confirms that the two-fold construction produces the
same root.

We have shown that a two-fold construction satisfying condition (1) produces a sequence
of similar triangles. Conversely, assume we are given a sequence of similar triangles as-
sociated with a non-real root. We will construct two-fold lines that satisfy condition (1)
(See Figure 17 through Figure 21). First, construct line L′ as the perpendicular bisector of
C1C2. Then construct the fold line F1 as the angle bisector of two lines LL′(C0),C2 and LP1,C2 .
Then the point F2(C0) equals P1, and thus two triangles △C3C2F2(C0) and △C0C1F2(C0)
are similar, which implies condition (1) is satisfied. Since F1 is the angle bisector of two
lines LL′(C0),C2 and LP1,C2 , there are two solutions for the same sequence of similar triangles.
Therefore there is a 2 to 1 correspondence between two-fold lines satisfying condition (1)
and the resulting LMCR sequence of similar triangles.

F2

F1

L1

L2

L3

C ′
0F2(C0)

′

C0

F2(C0)

C1

C2

C3

L4

Figure 21. Reflection of △C0C1F2(C0) across L4 and F1 showing the similar
triangle configuration

6. Conclusion

We have examined geometric constructions using Origami, demonstrating the progression
from classical ruler-and-compass methods to powerful multiple fold techniques. The Huzita-
Justin axioms provide a complete axiomatic foundation for single-fold Origami, with axioms
O1–O5 exactly characterizing RC-constructible points and axiom O6 enabling cubic equation
solutions including angle trisection.

The introduction of multiple-fold axioms significantly extends constructive power. We
showed that (n − 2)-fold Origami can solve degree n polynomials using Lill’s geometric
method. Furthermore, by introducing Lill’s Method for Complex Roots (LMCR), we pre-
sented an explicit construction method using two-fold Origami to solve all quadratic equa-
tions with complex coefficients via the axiom AL13a7bb.

It is natural to ask whether the LMCR construction can be generalized to higher-degree
polynomials. As n increases, the number of alignment conditions grows, and representing
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specific angles through reflections and point-line incidences becomes increasingly intricate.
Building on the explicit construction method developed here for quadratic equations, we
plan to investigate similar approaches for cubic and higher-degree complex polynomials
using multiple-fold Origami.
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